Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Biomedical and Environmental Sciences ; (12): 419-436, 2022.
Article in English | WPRIM | ID: wpr-927681

ABSTRACT

Objective@#To investigate the function of primary cilia in regulating the cellular response to temozolomide (TMZ) and ionizing radiation (IR) in glioblastoma (GBM).@*Methods@#GBM cells were treated with TMZ or X-ray/carbon ion. The primary cilia were examined by immunostaining with Arl13b and γ-tubulin, and the cellular resistance ability was measured by cell viability assay or survival fraction assay. Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride, the autophagy was measured by acridine orange staining assay. The DNA damage repair ability was estimated by the kinetic curve of γH2AX foci, and the DNA-dependent protein kinase (DNA-PK) activation was detected by immunostaining assay.@*Results@#Primary cilia were frequently preserved in GBM, and the induction of ciliogenesis decreased cell proliferation. TMZ and IR promoted ciliogenesis in dose- and time-dependent manners, and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR. The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair. The interference of ciliogenesis reduced DNA-PK activation, and the knockdown of DNA-PK led to cilium formation and elongation.@*Conclusion@#Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.


Subject(s)
Humans , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/metabolism , Cell Line, Tumor , DNA/therapeutic use , Glioblastoma/metabolism , Radiation, Ionizing , Temozolomide/therapeutic use
2.
Acta Pharmaceutica Sinica B ; (6): 3935-3949, 2021.
Article in English | WPRIM | ID: wpr-922451

ABSTRACT

A significant proportion of non-small cell lung cancer (NSCLC) patients experience accumulating chemotherapy-related adverse events, motivating the design of chemosensitizating strategies. The main cytotoxic damage induced by chemotherapeutic agents is DNA double-strand breaks (DSB). It is thus conceivable that DNA-dependent protein kinase (DNA-PK) inhibitors which attenuate DNA repair would enhance the anti-tumor effect of chemotherapy. The present study aims to systematically evaluate the efficacy and safety of a novel DNA-PK inhibitor M3814 in synergy with chemotherapies on NSCLC. We identified increased expression of DNA-PK in human NSCLC tissues which was associated with poor prognosis. M3814 potentiated the anti-tumor effect of paclitaxel and etoposide in A549, H460 and H1703 NSCLC cell lines. In the four combinations based on two NSCLC xenograft models and two chemotherapy, we also observed tumor regression at tolerated doses

3.
Protein & Cell ; (12): 352-365, 2020.
Article in English | WPRIM | ID: wpr-828777

ABSTRACT

With its high efficiency for site-specific genome editing and easy manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (CAS9) system has become the most widely used gene editing technology in biomedical research. In addition, significant progress has been made for the clinical development of CRISPR/CAS9 based gene therapies of human diseases, several of which are entering clinical trials. Here we report that CAS9 protein can function as a genome mutator independent of any exogenous guide RNA (gRNA) in human cells, promoting genomic DNA double-stranded break (DSB) damage and genomic instability. CAS9 interacts with the KU86 subunit of the DNA-dependent protein kinase (DNA-PK) complex and disrupts the interaction between KU86 and its kinase subunit, leading to defective DNA-PK-dependent repair of DNA DSB damage via non-homologous end-joining (NHEJ) pathway. XCAS9 is a CAS9 variant with potentially higher fidelity and broader compatibility, and dCAS9 is a CAS9 variant without nuclease activity. We show that XCAS9 and dCAS9 also interact with KU86 and disrupt DNA DSB repair. Considering the critical roles of DNA-PK in maintaining genomic stability and the pleiotropic impact of DNA DSB damage responses on cellular proliferation and survival, our findings caution the interpretation of data involving CRISPR/CAS9-based gene editing and raise serious safety concerns of CRISPR/CAS9 system in clinical application.

4.
Protein & Cell ; (12): 352-365, 2020.
Article in English | WPRIM | ID: wpr-828613

ABSTRACT

With its high efficiency for site-specific genome editing and easy manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated protein 9 (CAS9) system has become the most widely used gene editing technology in biomedical research. In addition, significant progress has been made for the clinical development of CRISPR/CAS9 based gene therapies of human diseases, several of which are entering clinical trials. Here we report that CAS9 protein can function as a genome mutator independent of any exogenous guide RNA (gRNA) in human cells, promoting genomic DNA double-stranded break (DSB) damage and genomic instability. CAS9 interacts with the KU86 subunit of the DNA-dependent protein kinase (DNA-PK) complex and disrupts the interaction between KU86 and its kinase subunit, leading to defective DNA-PK-dependent repair of DNA DSB damage via non-homologous end-joining (NHEJ) pathway. XCAS9 is a CAS9 variant with potentially higher fidelity and broader compatibility, and dCAS9 is a CAS9 variant without nuclease activity. We show that XCAS9 and dCAS9 also interact with KU86 and disrupt DNA DSB repair. Considering the critical roles of DNA-PK in maintaining genomic stability and the pleiotropic impact of DNA DSB damage responses on cellular proliferation and survival, our findings caution the interpretation of data involving CRISPR/CAS9-based gene editing and raise serious safety concerns of CRISPR/CAS9 system in clinical application.

5.
Experimental & Molecular Medicine ; : 233-242, 2004.
Article in English | WPRIM | ID: wpr-173480

ABSTRACT

Tumor hypoxia contributes to the progression of a malignant phenotype and resistance to ionizing radiation and anticancer drug therapy. Many of these effects in hypoxic tumor cells are mediated by expression of specific set of genes whose relation to therapy resistance is poorly understood. In this study, we revealed that DNA-dependent protein kinase (DNA-PK), which plays a crucial role in DNA double strand break repair, would be involved in regulation of hypoxia inducible factor-1 (HIF-1). HIF-1beta-deficient cells showed constitutively reduced expression and DNA-binding activity of Ku, the regulatory subunit of DNA-PK. Under hypoxic condition, the expression and activity of DNA- PK were markedly induced with a concurrent increase in HIF-1alpha expression. Our result also demonstrated that DNA-PK could directly interact with HIF- and especially DNA-PKcs, the catalytic subunit of DNA-PK, could be involved in phosphorylation of HIF-1alpha, suggesting the possibility that the enhanced expression of DNA- PK under hypoxic condition might attribute to modulate HIF-1alpha stabilization. Thus, the correlated regulation of DNA-PK with HIF-1 could contribute to therapy resistance in hypoxic tumor cells, and it provides new evidence for developing therapeutic strategies enhancing the efficacy of cancer therapy in hypoxic tumor cells.


Subject(s)
Humans , Antibodies/immunology , Cell Hypoxia , Cell Line, Tumor , DNA Helicases/immunology , DNA-Binding Proteins/genetics , Deferoxamine/pharmacology , Drug Resistance, Neoplasm/physiology , Immunoprecipitation , Neoplasms/enzymology , Nuclear Proteins/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Up-Regulation
6.
The Korean Journal of Physiology and Pharmacology ; : 9-14, 2003.
Article in English | WPRIM | ID: wpr-727626

ABSTRACT

Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.


Subject(s)
Humans , Breast Neoplasms , Catalytic Domain , Cell Cycle , Cell Death , DNA , DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase , Drug Resistance , Drug Therapy , Homicide , Radiation, Ionizing , United Nations
SELECTION OF CITATIONS
SEARCH DETAIL